IA generativa personalizada para marketing
Muchas empresas han comenzado a desarrollar casos de uso como los enumerados anteriormente. Sin embargo, las empresas que buscan diferenciarse verdaderamente van más allá. Están creando soluciones únicas y personalizadas para los clientes adaptando modelos disponibles en el mercado que se entrenan en conjuntos de datos más pequeños y específicos de tareas. Aquí es cuando las empresas pueden empezar a ver mejoras exponenciales en la personalización de todo para los clientes, desde campañas hasta productos. Cuando las empresas comienzan a remodelar los modelos de IA generativa existentes con sus propios datos y para sus necesidades altamente específicas, los resultados pueden ser profundos.
En el mundo del marketing, perfeccionar un modelo de IA generativa existente podría significar entrenar un modelo de código abierto con datos propietarios (por ejemplo, directrices de marca o creatividades de campañas de marketing históricas) para generar contenido personalizado. Este tipo de solución de IA generativa semipersonalizada se puede actualizar periódicamente con nuevos datos de la empresa y aprendizaje continuo. El resultado es una solución de inteligencia artificial personalizada y en continua mejora que ayuda a aumentar la ventaja competitiva de una empresa a medida que se desarrolla.
Ya estamos viendo empresas experimentar con IA generativa en casos de uso de alta prioridad. Aquí hay dos ejemplos:
Alcance hiperlocal
Una empresa de telecomunicaciones europea utilizó IA generativa para pasar de mensajes de contacto con el cliente, muy manuales y contundentes, a mensajes que interactuarían de manera más efectiva con segmentos específicos. Anteriormente, esta empresa de telecomunicaciones implementaba mensajes en solo cuatro macrosegmentos. Con una operación ajustada, se vio limitada por su capacidad para crear textos. Y a menudo, el mensaje que se produjo no resonó en los destinatarios. Por ejemplo, los mensajes enviados a clientes que no estaban en su dialecto nativo (el país en el que opera esta empresa de telecomunicaciones tiene varios dialectos) tuvieron tasas de conversión particularmente bajas.
La empresa de telecomunicaciones creó un motor basado en inteligencia artificial para crear mensajes hiperpersonalizados para 150 segmentos específicos. El motor se entrenó en datos de información no identificable personalmente para adaptar las comunicaciones a los atributos demográficos, regionales, dialectos y otros atributos de cada segmento. La información se pasó a GPT-4 y Dall-E para crear copias e imágenes, que luego se transfirieron al proveedor de servicios de correo electrónico a través de API y se prepararon para su implementación. Luego, los modelos de aprendizaje automático de próxima mejor acción recomendaron el producto, el canal de marketing y el momento óptimos para las comunicaciones de cada cliente. Con medidas de seguridad y protocolos de gobernanza adecuados (en este caso, participación humana total y revisión de todos los pasos para limitar explícitamente el número de versiones y el grado de personalización) para abordar los requisitos de riesgo, ética y privacidad, estas comunicaciones se implementaron a escala. El resultado fue un aumento del 40 por ciento en las tasas de respuesta, así como una reducción del 25 por ciento en los costos de implementación.
Innovación en el desarrollo de productos, creatividad y experiencias.
Una empresa asiática de bebidas buscaba entrar en el mercado de la UE más rápidamente de lo que habría tardado con los enfoques tradicionales de innovación y marketing. Históricamente, la empresa podía dedicar un año entero a idear un nuevo concepto de producto para un nuevo mercado. Recurrió a la inteligencia artificial para ayudar a responder dos preguntas: qué tipos de nuevas bebidas podrían atraer a los clientes europeos e impulsar el crecimiento, y qué métodos innovadores podrían acelerar el proceso de innovación de productos de principio a fin.
La empresa de bebidas utilizó por primera vez ChatGPT para proporcionar información a los usuarios proporcionándole información agregada y no confidencial del cliente y luego hizo preguntas sobre las tendencias de sabor para generar una comprensión básica del consumo de bebidas y el comportamiento del consumidor en el mercado de la UE. Este proceso llevó un día, mientras que este tipo de investigación de mercado suele tardar hasta una semana. Luego, el equipo de marketing profundizó esos conocimientos aplicando métodos de investigación más tradicionales, como etnografías y diarios digitales.
Los investigadores y diseñadores también recurrieron a la inteligencia artificial para perfeccionar los conceptos de productos. En el mundo del diseño de productos, a un diseñador industrial a menudo le toma entre siete y diez días desarrollar un concepto único de bebida de alta fidelidad que encapsule forma, sabor y empaque. Utilizando una herramienta de inteligencia artificial que genera conversión de texto a imagen, la empresa pudo producir 30 conceptos de bebidas de alta fidelidad con imágenes detalladas en un solo día. Luego, los especialistas en marketing llevaron estos conceptos al campo para realizar pruebas rápidas con los clientes. Debido a que los conceptos de IA de la generación parecían reales, los especialistas en marketing pudieron recopilar comentarios sólidos en esta etapa inicial sobre qué explorar más a fondo. Al final, la IA generativa ayudó a la empresa de bebidas a completar un proceso de un año en solo un mes.